Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming.

نویسندگان

  • D K Gehlhaar
  • G M Verkhivker
  • P A Rejto
  • C J Sherman
  • D B Fogel
  • L J Fogel
  • S T Freer
چکیده

BACKGROUND An important prerequisite for computational structure-based drug design is prediction of the structures of ligand-protein complexes that have not yet been experimentally determined by X-ray crystallography or NMR. For this task, docking of rigid ligands is inadequate because it assumes knowledge of the conformation of the bound ligand. Docking of flexible ligands would be desirable, but requires one to search an enormous conformational space. We set out to develop a strategy for flexible docking by combining a simple model of ligand-protein interactions for molecular recognition with an evolutionary programming search technique. RESULTS We have developed an intermolecular energy function that incorporates steric and hydrogen-bonding terms. The parameters in this function were obtained by docking in three different protein systems. The effectiveness of this method was demonstrated by conformationally flexible docking of the inhibitor AG-1343, a potential new drug against AIDS, into HIV-1 protease. For this molecule, which has nine rotatable bonds, the crystal structure was reproduced within 1.5 A root-mean-square deviation 34 times in 100 simulations, each requiring eight minutes on a Silicon Graphics R4400 workstation. The energy function correctly evaluates the crystal structure as the global energy minimum. CONCLUSIONS We believe that a solution of the docking problem may be achieved by matching a simple model of molecular recognition with an efficient search procedure. The necessary ingredients of a molecular recognition model include only steric and hydrogen-bond interaction terms. Although these terms are not necessarily sufficient to predict binding affinity, they describe ligand-protein interactions faithfully enough to enable a docking program to predict the structure of the bound ligand. This docking strategy thus provides an important tool for the interdisciplinary field of rational drug design.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Biomolecular Conformation on Docking Simulation: A Case Study on a Potent HIV-1 Protease Inhibitor

Human immunodeficiency virus infection / acquired immunodeficiency syndrome (HIV/AIDS) is a disease pertained to the human immune system. Given its crucial role in viral replication, HIV-1 protease (HIV-1 PR) is a prime therapeutic target in AIDS therapy. In this regard, the dynamic aspects of ligand-enzyme interactions may indicate an important role of conformational variability in HIV-1 PR in...

متن کامل

Effect of Biomolecular Conformation on Docking Simulation: A Case Study on a Potent HIV-1 Protease Inhibitor

Human immunodeficiency virus infection / acquired immunodeficiency syndrome (HIV/AIDS) is a disease pertained to the human immune system. Given its crucial role in viral replication, HIV-1 protease (HIV-1 PR) is a prime therapeutic target in AIDS therapy. In this regard, the dynamic aspects of ligand-enzyme interactions may indicate an important role of conformational variability in HIV-1 PR in...

متن کامل

Prediction of HIV-1 protease inhibitor resistance using a protein-inhibitor flexible docking approach.

Emergence of drug resistance remains one of the most challenging issues in the treatment of HIV-1 infection. Here we focus on resistance to HIV-1 protease inhibitors (PIs) at a molecular level, which can be analysed genotypically or phenotypically. Genotypic assays are based on the analysis of mutations associated with reduced drug susceptibility, but are problematic because of the numerous mut...

متن کامل

Resistance mechanism of human immunodeficiency virus type-1 protease to inhibitors: A molecular dynamic approach

Human immunodeficiency virus type 1 (HIV-1) protease inhibitors comprise an important class of drugs used in HIV treatments. However, mutations of protease genes accelerated by low fidelity of reverse transcriptase yield drug resistant mutants of reduced affinities for the inhibitors. This problem is considered to be a serious barrier against HIV treatment for the foreseeable future. In this st...

متن کامل

Fragment-Based flexible ligand docking by evolutionary optimization.

A new computational approach for the efficient docking of flexible ligands in a rigid protein is presented. It exploits the binding modes of functional groups determined by an exhaustive search with solvation. The search in ligand conformational space is performed by a genetic algorithm whose scoring function approximates steric effects and intermolecular hydrogen bonds. Ligand conformations ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemistry & biology

دوره 2 5  شماره 

صفحات  -

تاریخ انتشار 1995